卓哥范文网 - 设为首页 - 加入收藏
当前位置 首页 > 专题范文 > 公文范文 >

比基本性质教学设计五篇(2023年)

时间:2023-01-02 18:10:05 来源:网友投稿

比的基本性质教学设计1  教学目标:  1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。  2、通过观察、猜测、举例下面是小编为大家整理的比基本性质教学设计五篇(2023年),供大家参考。

比基本性质教学设计五篇(2023年)

比的基本性质教学设计1

  教学目标:

  1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。

  2、通过观察、猜测、举例验证、归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。

  3、引导学生自主参与知识探究过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。

  教学重点:探索并掌握比例的基本性质。

  教学难点:根据乘法等式写出正确的比例。

  教学准备:多媒体课件

  整体设计说明:

  本班的孩子基础较差,很多孩子没有养成好的学习习惯,好的思考方法,所以课堂上的重点放在了发现并概括出比例的基本性质上。在比例的基本性质应用时,重点突出孩子的思考过程,强调孩子有根据地思考,养成独立思考的习惯。

  教学过程

  一、旧知铺垫导入。

  1、一辆汽车上午4小时行驶了200千米,下午3小时行驶了150千米。说一说上、下午行驶的路程和时间的比,这两个比能组成比例吗?为什么?

  2、比和比例有什么区别?

  设计意图:注重从学生已有的知识出发,为新课做好铺垫。

  二、自主探究

  过渡:同学们,比有各部位的名称,把比组成比例后我们有了新的名称,请自学课本第34页。生阅读后,请同学说出黑板上比例各部分的名称。

  设计意图:组成比例的四个数的名称的认识对孩子们来说是比较简单的,所以让孩子们自学,培养孩子的自主学习能力,养成读数学书的习惯。

  三、反馈练习。

  指出下面比例的外项和内项。(投影出示)

  先小组之内说一说,然后在指名回答。重点说分数形式的比例外项和内项。

  设计意图:这一环节重点学习组成一个比例的两个比哪两个数是外项,哪两个数是内项。重点突出分数形式下怎么去找比例的内项和外项。

  四、探究比例的基本性质

  (1)投影出示几组比例,让学生观察看看能有什么发现?细心的同学很快会发现这几组比例数字相同,但是书写位置不同。然后老师在质疑,为什么这些比例里的四个数书写位置不同却能组成比例呢?请小组合作找个这个秘密。

  (2)学生找出原因后,教师引导学生用一句话总结出来。并指出这叫做比例的基本性质,板书课题。

  (3)继续提出:是不是所有的比例都具有这样的性质,举例验证,最后得出结论。

  (4)比例写出分数形式后,也就是等号两端的分子分母交叉相乘,乘得的积也一定相等。

  设计意图:这一环节我根据学生好奇的心理,用质疑的方式来激发学生的学习兴趣,让学生主动去探索新知,这样也能让学生体会到总结归纳的过程,并渗透科学态度的教育。

  五、巩固练习

  1、应用比例的基本性质,判断下面哪组中的两个比能否组成比例(投影出示练习)。

  2、应用比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例。

  (学生独立完成后,用展示台展示)

  3、根据比例的基本性质,在( )里填上适当的数。(投影出示)

  六、全课总结:这节课你有什么收获。

  设计意图:关注学生知识与技能的掌握情况,并且留给孩子质疑问难的.空间。

  七、拓展练习:把下面的等式改写成比例。

  3×40=8×15

比的基本性质教学设计2

  教学内容:

  人教版数学第11册,第45页比的基本性质,例1和“做一做”及练习十一2及补充题。

  教学目标:

  1、通过自主探索、比较类推出比的基本性质,使学生理解并掌握比的基本性质,理解最简单的整数比,能应用比的基本性质进行比的化简。

  2、培养学生类比、推理和概括思维能力。

  3、引导学生揭示知识间的联系,向学生进行对立统一的辩证唯物主义教育。

  教学重点:理解比的基本性质。

  教学难点:运用比的基本性质进行化简比。

  教学准备:电子白板(课件)

  教学过程:

  一、复习铺垫

  1、求比值(让学生独立练习)

  18:2423:49 0.75:0.25

  2、提出问题:

  (1) 23:49 =23 ÷ 49= 32,是根据什么来约分的?分数的基本性质是什么?

  (2)0.75:0.25= 0.75÷0.25=75÷25=3,我们把被除数转化为整数,根据什么?说说商不变的性质。

  3、比与除法、分数有何联系?

  白板课件出示商不变性质和分数的基本性质。

  ( 设计意图:为了激发学生的求知欲,也为了让学生更好地理解比的基本性质,让学生通过回忆旧知,小组内交流做题的依据及知识间的内在联系。激活学生的思维。同时,这种回顾旧知的方法,有利于培养学生主动将新旧知识相联系、相对比,形成良好的学习方法,并构成知识网络。自然地过渡到了新课,使学生很清楚地知道知识的内在联系。)

  师:联系比和除法、分数的关系,想一想:在比中有怎样的规律?

  二、探究新知

  (一)对于比,你有何想法? 学生纷纷猜测比的基本性质是什么?

  (二)验证交流

  1、在白板上出示:6∶8、12∶16和3:4,要求学生分别求出比值。

  提问:这三个比相等吗?为什么?学生:这三个比相等,因为它们的比值都是(0.75).

  教师用等号连结三个比(6∶8=12∶16=3∶4),提问:在这个式子中的三个比,同学们看到什么变了?什么没有变?

  2、教师引导学生观察后指出:为什么这几个比的前项、后项都变了,而它们的比值却不变呢?前项和后项的变化有没有规律呢?下面我们一起来探讨这个问题.

  引导学生对等式(6∶8=12∶16=3∶4)进行分析,寻找规律.

  先引导学生根据商不变性质进行观察,

  [1][2][3]下一页

  (1)6∶8怎么变成等于12∶16?教师用白板课件展示变化过程。

  提问:请认真观察这些式子,谁能用一句话把其中的规律表达出来?

  引导学生得出:比的前项和后项都乘相同的数,比值不变.

  再引导学生认真观察.6∶8怎么会变成等于3∶4呢?课件展示变化过程,请学生说理由。

  (2)问:谁能用一句话把其中的规律表达出来?

  引导学生初步归纳出:比的前项和后项都除以相同的数,比值不变.

  然后提问:比的前项和后项都乘或者除以相同的数,这里说的是不是什么数都行?乘0或者除以0可以吗?为什么?

  组织学生讨论,使他们明确:因为除以0本身没有意义,乘0使比的后项没有意义.

  最后让学生完整地归纳总结出比的基本性质,教师用课件出示。

  (设计意图:因为有“分数的基本性质”作基础,所以学生的猜测较容易,这里完全放手,让学生大胆去猜,但并非单纯的模仿,得自己举例验证猜测的正确性。使学生养成严谨的思考问题的方式,任何猜想在没有得到证实的情况下,它的可行性都是不确定的,从而影响到今后的生活方式这里安排小组活动非常有必要,留有足够的时间让学生充分猜想、举出充分的例子来说明他们猜想的正确性,然后小组交流、汇报验证方法,再用课件展示。使学生在汇报、质疑的过程中理解并掌握比的基本性质。)

  3、指导学生看书,齐读性质后,问:在比的基本性质中,你认为哪些字词是关键字词?(要求学生说出“同时”、“相同的数”、“零除外”,教师用红笔圈上.)

  (三)结合练习理解比的基本性质

  (1)教师说一个比,学生抢答出和它比值相等的比。如2:5=( ):10,6:( )=3:4等。

  (2)同桌互说。

  师:为了使数量间的关系更加简明,并使计算简便,我们经常要应用比的基本性质,把比化成最简单的整数比.

  问:什么是最简单的整数比?

  然后引导学生联系最简分数的概念,使学生明确化成最简单的整数比就是(1)它是一个比(2)它的前项和后项必须是整数(3)它的前项和后项必须是互质数

  (四)试一试.(学习书上例1)

  根据比的基本,把下列比化成最简单的整数比.

  1、(课件出示)你能看出这两面*有什么关系吗?学生试着化简。

  (1)课件展示15:10=(15÷5):(10÷5)=3:2

  180:120=(180÷60):(120÷60)=3:2

  (2)问:5是15和10的什么数,为什么要除以5,60呢?

  (课件答疑,学生理解它们都是两个数的最大公因数。)

  (3)再问:两面*的长和宽的比值相等,说明什么?(大小不同,但形状一样。)再次强调化成最简单的整数比的重要性。

  (4)完成书47页练习十一2题。

  2、把下面各比化成最简单的整数比

  上一页[1][2][3]下一页

  16 :29 0.75:2

  观察它们和刚才化简的比有什么不同?

  (2)学生尝试解答,教师巡视辅导,并请2位同学在黑板上写。再同桌互相对照,说说自己这样做的理由.

  (3)汇报化简的方法,教师结合课件讲解。

  3、(课件出示)化简下列各比

  15︰21 0.12︰0.4 0.1:0.125

  3.2:4 0.1:23 23 :12

  (五)小结化成最简整数比的一般方法。

  ①如果前项、后项都是整数,只要同时除以这两个的最大公因数,就可以化成最简单的整数比。

  ②如果前项、后项都是分数,化简时先要同时乘分母的最小公倍数,去掉分母,把它转化成整数比;然后再看是不是最简单的整数比。

  ③如果前项、后项都是小数,化简时先要同时扩大相同的倍数(10、100、1000……),把它转化成整数比;然后再看是不是最简单的整数比。

  三、巩固练习

  1、请你判断对错.

  (1)0.48∶0.6化简后是0.8.(2)34 ∶12 化简后是32

  (3)0.4∶1化简后是25 .

  2、帮小蜗牛找家。

  家的比为(6 : 300.1 : 0.4 2 :6 2 : 8 :1 16:20)

  小蜗牛(45 、15、 13 、14、 23 )

  上一页[1][2][3]

比的基本性质教学设计3

  教学目标:

  1.认识比例各部分名称,理解比例的基本性质。

  2.能根据比例的基本性质,正确判断两个比能否组成比例。 3.在自主探究、观察比较中,培养学生分析、概括能力。

  教学重、难点:

  重点:理解比例的基本性质,能正确判断两个比能否组成比例。 难点:自主探究比例的基本性质。

  教学过程:

  一、引入

  同学们,前段时间在上海举办了一个举世闻名的盛会,知道是什么吗?(世博会)

  对,老师也去参观了,参观中,老师还拍下了我最喜欢的建筑(出示:*馆图片),知道这是什么吗?(*馆)

  对,*馆的造型很独特,寓意也很深刻,老师想把他放大放到家里做装饰品,看看,哪一副图是按比例放大后的照片,为什么?

  生:第二幅只扩大了长,宽没变,第三幅图只扩大了宽,长没变,第三幅图长和宽都扩大了。

  二、探索新知

  师:通过观察选择了第三幅图,如果给出相应的数据,你能结合前面学习的比例知识和大家说一说,为什么选第三幅图吗?

  (给出数据: 20cm、10cm, 30cm、15cm) 师:有道理,根据这两幅图,你还能写出哪些比例? (生独立写)

  反馈板书: 20∶30=10∶15

  30∶15=20∶10

  10∶15=20∶30

  20∶10=30∶15 讲解:内项与外项

  刚才我们用四个数组成了多个比例,在数学里,我们把组成了比例的四个数,叫做比例的项,其中中间的两个数叫做比例的内项,外面的两个数叫做比例的外项。(板书)

  观察:组成比例的内项和外项,你有什么发现,并在小组内交流你的发现.反馈: 在比例里,两个内项的积等于两个外项的积。

  师:同意吗?

  师:说说你是怎么想的,(板书:20×15=30×10)

  师:每一个人再写一个比例,然后在小组内交流一下,看看是否有同样的规律?

  学生写并小组内交流。

  谁再来说一说这一发现?

  师:PPT出示(在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。)

  如果a∶b=c∶d,那么这个规律可以表示成什么?

  学生口答,教师板书;a×d=b×c 如果把比例写成分数形式,把等号两端的分子、分母分别交叉相乘,结果怎样?

  说一说 1.应用比例的基本性质,判断下面的两个比例能否组成比例,并说明理由。

  313115 ∶ 和 ∶ 511133( )×( )=( ) ( )×( )=( ) 填一填

  根据比例的基本性质,在括号里填上合适的数。

  2∶3=4∶( )(口答) 再出示:

  2∶4=3∶( ) ( ) ∶3=4∶2 让学生填一填 为什么都填的是6?

  看来用

  2、

  3、

  4、6可以组成不同的比例,还可以组成哪些比例呢? 学生自己独立写一写。

  反馈:有什么好方法能写的又对又快。

  三、课堂小结

比的基本性质教学设计4

  教学目标:

  1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。

  2、通过观察、猜测、举例验证、归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。

  3、引导学生自主参与知识探究过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。

  教学重点:探索并掌握比例的基本性质。

  教学难点:根据乘法等式写出正确的比例。

  教学准备:多媒体课件

  整体设计说明:

  本班的孩子基础较差,很多孩子没有养成好的学习习惯,好的思考方法,所以课堂上的重点放在了发现并概括出比例的基本性质上。在比例的基本性质应用时,重点突出孩子的思考过程,强调孩子有根据地思考,养成独立思考的习惯。

  教学过程

  一、旧知铺垫导入。

  1、一辆汽车上午4小时行驶了200千米,下午3小时行驶了150千米。说一说上、下午行驶的路程和时间的比,这两个比能组成比例吗?为什么?

  2、比和比例有什么区别?

  设计意图:注重从学生已有的知识出发,为新课做好铺垫。

  二、自主探究

  过渡:同学们,比有各部位的名称,把比组成比例后我们有了新的名称,请自学课本第34页。生阅读后,请同学说出黑板上比例各部分的名称。

  设计意图:组成比例的四个数的名称的认识对孩子们来说是比较简单的,所以让孩子们自学,培养孩子的自主学习能力,养成读数学书的习惯。

  三、反馈练习。

  指出下面比例的外项和内项。(投影出示)

  先小组之内说一说,然后在指名回答。重点说分数形式的比例外项和内项。

  设计意图:这一环节重点学习组成一个比例的两个比哪两个数是外项,哪两个数是内项。重点突出分数形式下怎么去找比例的内项和外项。

  四、探究比例的基本性质

  (1)投影出示几组比例,让学生观察看看能有什么发现?细心的同学很快会发现这几组比例数字相同,但是书写位置不同。然后老师在质疑,为什么这些比例里的四个数书写位置不同却能组成比例呢?请小组合作找个这个秘密。

  (2)学生找出原因后,教师引导学生用一句话总结出来。并指出这叫做比例的基本性质,板书课题。

  (3)继续提出:是不是所有的比例都具有这样的性质,举例验证,最后得出结论。

  (4)比例写出分数形式后,也就是等号两端的分子分母交叉相乘,乘得的积也一定相等。

  设计意图:这一环节我根据学生好奇的心理,用质疑的方式来激发学生的学习兴趣,让学生主动去探索新知,这样也能让学生体会到总结归纳的过程,并渗透科学态度的教育。

  五、巩固练习

  1、应用比例的基本性质,判断下面哪组中的两个比能否组成比例(投影出示练习)。

  2、应用比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例。

  (学生独立完成后,用展示台展示)

  3、根据比例的基本性质,在( )里填上适当的数。(投影出示)

  六、全课总结:这节课你有什么收获。

  设计意图:关注学生知识与技能的掌握情况,并且留给孩子质疑问难的空间。

  七、拓展练习:把下面的等式改写成比例。

  3×40=8×15

比的基本性质教学设计5

  一、教学目标

  知识与技能目标:在具体情境中,理解比例的意义和基本性质,会应用比例的意义和基本性质正确判断两个比能否组成比例。

  过程与方法目标:在探索比例的意义和基本性质的过程中发展推理能力。

  态度价值观目标:通过自主学习,经历探究的过程,体验成功的快乐。

  二、教学重点难点

  重点: 理解比例的意义和基本性质。

  难点:判断两个比是否成比例。

  三、教学过程设计

  (一)创设情境,提出问题

  1. 复习导入:

  (1)什么叫做比?

  两个数相除又叫做两个数的比。

  (2)什么叫做比值?

  比的.前项除以比的后项所得商,叫做比值。

  (3)求下面各比的比值:

  12:16= 4、5:2、7= 10:6=

  谈话:今天我们要学的知识也和比有着密切的关系。

  2、创设情境,提出问题。

  谈话:同学们,你们知道青岛都有哪些产品非常有名?(学生根据自己的了解回答)青岛啤酒享誉世界各地,这节课,我们将一起去探索啤酒生产中的数学

  出示课件:这是一辆货车正在运输啤酒的主要生产原料大麦芽。

  这是它两天的运输情况:

  一辆货车运输大麦芽情况

  第一天 第二天

  运输次数 2 4

  运输量(吨) 16 32

  根据这个表格,让学生提出有关比的数学问题。同桌俩人,一个提问题,一个将问题的答案写在本上,看哪对同桌合作得最好,提出的问题最多。

  谈话:谁来交流?跟大家说一下你的问题是什么?

  学生可能出现以下的问题:

  货车第一天的运输量与运输次数的比是多少? (16 : 2)

  货车第二天的运输量与运输次数的比是多少?(32 :4)

  货车第二天的运输量与第一天运输量的比是多少?(32 :16)

  (师根据学生的回答,将答案一一贴或写于黑板)

  2 :16; 4 :32; 16 :2; 32 :4;

  16 :32; 2 :4; 32 :16; 4 :2。

  1、认识比例及各部分名称。

  谈话:学习数学,我们不仅要善于提问,还要善于观察。现在就请你观察这两个比(16 :2;32 :4)看能发现什么?(学生会发现比值相等)

  思考:这个比值所表示的实际意义是什么?(每次的运输量)

  既然它们的比值相等,那我们可以用什么符号将两个比连接起来?

  学生用等号连接,并请学生把这个式子读一下。

  试一试:剩下的这些比中,哪两个也能用等于号连接?在你的练习本上写写看。(学生独立完成)

  介绍:像这样表示两个比相等的式子,数学上就把它叫做比例。我们知道,比有前项、后项,比例的各部分也有自己的名字。组成比例的四个数叫做比例的项,像16、4位于两端的两项叫做比例的外项,2、32位于中间的两项叫做比例的内项。比例,也可以写成分数形式。

  学生先把2 :16=4 :32这个比例写成分数形式,再同桌俩交流它的内项外项分别是谁。

  自学提示:同学们表现得都特别棒,现在请你看课本自主练习第1题,能否根据刚才所学知识解决。(学生独立完成)

  2、比和比例有什么区别?

  比

  4︰6

  比例

  2︰3=4︰6

  3.判断下面两个比能否组成比例?

  6∶9 和 9∶12

  总结方法:判断两个比能不能组成比例,要看它们的比值是否相等。

  4.谈话引入:刚才,你们是根据比例的意义先求出比值再判断两个比能否组成比例。我不是这样想的,可能很快就判断好了,想知道其中的秘密吗?其实秘密就藏在比例的两个内项和两个外项之中,它们两者之间可是存在着一种奇妙的关系,你想揭穿这个秘密吗?

  那就请你以16:2=32:4为例,通过看一看,想一想,算一算等方法,试试能不能发现这个关系!

  5、学生先独立思考,再小组交流,探究规律。

  出示研究方案:

  ①观察比例的两个内项与两个外项,用算一算的方法,找同学说一说,你发现了什么。

  ②是不是每一个比例的两个外项与两个内项都具有这种规律,请你再举出这样的例子来。

  ③通过以上研究,你发现了什么?

  6、全班交流。

  (1)哪个小组愿意将你们的发现与大家分享?

  (2)还有其他发现吗?

  (3)你们组所发现的是不是个偶然现象呢?咱们最好是怎么办?

  7、验证发现,共享成功。

  师:对,举例验证,这可是一种非常好的数学方法。那现在,咱们可以利用黑板上的比例,也可以自己组一个新的比例,验证看看,是不是所有的比例都是两个外项的积等于两个内项的积。(学生独立验证)

  8、利用一个比例通过课件形象的展示两个外项的积等于两个内项的积。

  9、小结:不错,看来同学们很会观察,很会思考,很会验证,自己发现了比例的一条规律。也就是,在比例里,两个外项的积等于两个内项的积。数学上我们把这条规律,叫做比例的基本性质。这也是我们在小学阶段,在继分数、比的基本性质之后学习的第三个基本性质。运用它,我们可以解决许多数学问题。

  10、比例的基本性质的应用:

  应用比例的基本性质,判断下面两个比能不能组成比例.

  6∶3 和 8∶5

  方法:a、先假设这两个比能组成比例

  b、说出写出的比例的内项和外项分别是几,再分别算出外项和内项的积。

  c、根据比例的基本性质判断组成的比例是否正确。

  (二)自主练习,拓展提升

  1、判断下面每组中两个比能否组成比例?

  1/3∶ 1/4和12∶9 16∶2和32∶4 7∶4和5∶3 80∶2和200∶5

  让学生根据比例的意义进行判断,教师结合回答板书:

  1/3∶1/4 =12∶9 16∶2=32∶4 7∶4≠5∶3 80∶2=200∶5

  2、连线:自主练习第3题。

  3、填空:自主练习第6题。

  4、自主练习第10题:

  2:1=4:( ) 1.4:2=( ):3 1/2:1/3=3( ) 12:( )=( ):5

  5、下面的四个数可以组成比例吗?把组成的比例写出来(能写几个写几个)。

  2、3、4 和 6

  因为 2 × 6 = 3 × 4 所以这四个数可以组成比例

  2:3=4:6 6:4=3:2 4:2=6:3 3:6=2:4

  2:4=3:6 6:3=4:2 4:6=2:3 3:2=6:4

  练习时,给学生充足的时间让学生独立完成,然后交流沟通。

  (三)回顾总结

  在这节课中你又有什么新的收获?

推荐访问:教学设计 性质 比基本性质教学设计五篇 比的基本性质教学设计1 比的基本性质教学设计及反思

Top