卓哥范文网 - 设为首页 - 加入收藏
当前位置 首页 > 专题范文 > 公文范文 >

八年级数学上册知识点【10篇】

时间:2023-01-10 16:55:05 来源:网友投稿

八年级数学上册知识点1  三角形  1全等三角形的对应边、对应角相等  2边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等  3角边角公理(ASA)有两角和它们的夹边对应相等的两个三角下面是小编为大家整理的八年级数学上册知识点【10篇】,供大家参考。

八年级数学上册知识点【10篇】

八年级数学上册知识点1

  三角形

  1全等三角形的对应边、对应角相等

  2边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等

  3角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等

  4推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等

  5边边边公理(SSS)有三边对应相等的两个三角形全等

  6斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等

  7定理1在角的*分线上的点到这个角的两边的距离相等

  8定理2到一个角的两边的距离相同的点,在这个角的*分线上

  9角的*分线是到角的两边距离相等的所有点的集合

  10等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)

  21推论1等腰三角形顶角的*分线*分底边并且垂直于底边

  22等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合

  23推论3等边三角形的各角都相等,并且每一个角都等于60°

  24等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

  25推论1三个角都相等的三角形是等边三角形

  26推论2有一个角等于60°的等腰三角形是等边三角形

  27在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

  28直角三角形斜边上的中线等于斜边上的一半

  29定理线段垂直*分线上的点和这条线段两个端点的距离相等

  30逆定理和一条线段两个端点距离相等的点,在这条线段的垂直*分线上

  一次函数

  (1)正比例函数:一般地,形如y=kx(k是常数,k?0)的函数,叫做正比例函数,其中k叫做比例系数;

  (2)正比例函数图像特征:一些过原点的直线;

  (3)图像性质:

  ①当k>0时,函数y=kx的图像经过第一、三象限,从左向右上升,即随着x的增大y也增大;②当k<0时,函数y=kx的图像经过第二、四象限,从左向右下降,即随着x的增大y反而减小;

  (4)求正比例函数的解析式:已知一个非原点即可;

  (5)画正比例函数图像:经过原点和点(1,k);(或另外一个非原点)

  (6)一次函数:一般地,形如y=kx+b(k、b是常数,k?0)的函数,叫做一次函数;

  (7)正比例函数是一种特殊的一次函数;(因为当b=0时,y=kx+b即为y=kx)

  (8)一次函数图像特征:一些直线;

  (9)性质:

  ①y=kx与y=kx+b的倾斜程度一样,y=kx+b可看成由y=kx*移|b|个单位长度而得;(当b>0,向上*移;当b<0,向下*移)

  ②当k>0时,直线y=kx+b由左至右上升,即y随着x的增大而增大;

  ③当k<0时,直线y=kx+b由左至右下降,即y随着x的增大而减小;

  ④当b>0时,直线y=kx+b与y轴正半轴有交点为(0,b);

  ⑤当b<0时,直线y=kx+b与y轴负半轴有交点为(0,b);

  (10)求一次函数的解析式:即要求k与b的值;

  (11)画一次函数的图像:已知两点;

  用函数观点看方程(组)与不等式

  (1)解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值;从图像上看,这相当于已知直线y=kx+b,确定它与x轴交点的横坐标的值;

  (2)解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围;

  (3)每个二元一次方程都对应一个一元一次函数,于是也对应一条直线;

  (4)一般地,每个二元一次方程组都对应两个一次函数,于是也对应两条直线。从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线交点的坐标;

  四边形的相关概念

  1、四边形

  在同一*面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形。

  2、四边形具有不稳定性

  3、四边形的内角和定理及外角和定理

  四边形的内角和定理:四边形的内角和等于360°。

  四边形的外角和定理:四边形的外角和等于360°。

  推论:多边形的内角和定理:n边形的内角和等于(n?2)?180°;

  多边形的外角和定理:任意多边形的外角和等于360°。

  6、设多边形的边数为n,则多边形的对角线共有n(n?3)条。从n边形的一个顶点出2

  发能引(n—3)条对角线,将n边形分成(n—2)个三角形。

  *行四边形

  1、*行四边形的定义

  两组对边分别*行的四边形叫做*行四边形。

  2、*行四边形的性质

  (1)*行四边形的对边*行且相等。

  (2)*行四边形相邻的角互补,对角相等

  (3)*行四边形的对角线互相*分。

  (4)*行四边形是中心对称图形,对称中心是对角线的交点。

  常用点:(1)若一直线过*行四边形两对角线的交点,则这条直线被一组对边截下的线段

  的中点是对角线的交点,并且这条直线二等分此*行四边形的面积。

  (2)推论:夹在两条*行线间的*行线段相等。

  3、*行四边形的判定

  (1)定义:两组对边分别*行的四边形是*行四边形

  (2)定理1:两组对角分别相等的四边形是*行四边形

  (3)定理2:两组对边分别相等的"四边形是*行四边形

  (4)定理3:对角线互相*分的四边形是*行四边形

  (5)定理4:一组对边*行且相等的四边形是*行四边形

  4、两条*行线的距离

  两条*行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条*行线的距离。*行线间的距离处处相等。

  5、*行四边形的面积

  S*行四边形=底边长×高=ah

  初二上册数学知识点

  (一)运用公式法

  我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:

  a2—b2=(a+b)(a—b)

  a2+2ab+b2=(a+b)2

  a2—2ab+b2=(a—b)2

  如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。

  (二)*方差公式

  *方差公式

  (1)式子:a2—b2=(a+b)(a—b)

  (2)语言:两个数的*方差,等于这两个数的和与这两个数的差的积。这个公式就是*方差公式。

  (三)因式分解

  1、因式分解时,各项如果有公因式应先提公因式,再进一步分解。

  2、因式分解,必须进行到每一个多项式因式不能再分解为止。

  (四)完全*方公式

  (1)把乘法公式(a+b)2=a2+2ab+b2和(a—b)2=a2—2ab+b2反过来,就可以得到:

  a2+2ab+b2=(a+b)2

  a2—2ab+b2=(a—b)2

  这就是说,两个数的*方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的*方。

  把a2+2ab+b2和a2—2ab+b2这样的式子叫完全*方式。

  上面两个公式叫完全*方公式。

  (2)完全*方式的形式和特点

  ①项数:三项

  ②有两项是两个数的的*方和,这两项的符号相同。

  ③有一项是这两个数的积的两倍。

  (3)当多项式中有公因式时,应该先提出公因式,再用公式分解。

  (4)完全*方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。

  (5)分解因式,必须分解到每一个多项式因式都不能再分解为止。

  (五)分组分解法

  我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式、

  如果我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式、

  原式=(am+an)+(bm+bn)

  =a(m+n)+b(m+n)

  做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义、但不难看出这两项还有公因式(m+n),因此还能继续分解,所以

  原式=(am+an)+(bm+bn)

  =a(m+n)+b(m+n)

  =(m+n)×(a+b)、

  学好数学的关键就在于要适时适量地进行总结归类,接下来小编就为大家整理了这篇人教版八年级数学全等三角形知识点讲解,希望可以对大家有所帮助。

  全等三角形的性质:全等三角形对应边相等、对应角相等。

  全等三角形的判定:三边相等(SSS)、两边和它们的夹角相等(SAS)、两角和它们的夹边(ASA)、两角和其中一角的对边对应相等(AAS)、斜边和直角边相等的两直角三角形(HL)。

  角*分线的性质:角*分线*分这个角,角*分线上的点到角两边的距离相等

  角*分线推论:角的内部到角的两边的距离相等的点在叫的*分线上。

  证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角*分线、中线、高、等腰三角形、等所隐含的"边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)、

  人教版八年级数学全等三角形知识点讲解就为大家介绍到这里了,希望大家都能养成善于总结的好习惯。

  这种利用分组来分解因式的方法叫做分组分解法、从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式。

  (六)提公因式法

  1、在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式、当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式、

  2、运用公式x2+(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:

  1)必须先将常数项分解成两个因数的积,且这两个因数的代数和等于

  一次项的系数。

  2)将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:

  ①列出常数项分解成两个因数的积各种可能情况;

  ②尝试其中的哪两个因数的和恰好等于一次项系数、

  3)将原多项式分解成(x+q)(x+p)的形式、

  (七)分式的乘除法

  1、把一个分式的分子与分母的公因式约去,叫做分式的约分、

  2、分式进行约分的目的是要把这个分式化为最简分式、

  3、如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式、如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分、

  4、分式约分中注意正确运用乘方的符号法则,如x—y=—(y—x),(x—y)2=(y—x)2,(x—y)3=—(y—x)3、

  5、分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按—1的偶次方为正、奇次方为负来处理、当然,简单的分式之分子分母可直接乘方、

  6、注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减。

  (八)分数的加减法

  1、通分与约分虽都是针对分式而言,但却是两种相反的变形、约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来。

  2、通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变、

  3、一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备、

  4、通分的依据:分式的基本性质、

  5、通分的关键:确定几个分式的公分母、

  通常取各分母的所有因式的次幂的积作公分母,这样的公分母叫做最简公分母。

  6、类比分数的通分得到分式的通分:

  把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

  7、同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

  同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。

  8、异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减。

  9、同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号。

  10、对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分。

  11、异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化。。

  12、作为最后结果,如果是分式则应该是最简分式。

  (九)含有字母系数的一元一次方程

  含有字母系数的一元一次方程

  引例:一数的a倍(a≠0)等于b,求这个数。用x表示这个数,根据题意,可得方程ax=b(a≠0)

  在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。

  含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必须特别注意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零。

八年级数学上册知识点2

  第十一章三角形

  一、知识框架:

  知识概念:

  1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

  2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

  3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

  4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

  5、角*分线:三角形的一个内角的*分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角*分线。

  6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

  7、多边形:在*面内,由一些线段首尾顺次相接组成的图形叫做多边形。

  8、多边形的内角:多边形相邻两边组成的角叫做它的内角。

  9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

  10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

  11、正多边形:在*面内,各个角都相等,各条边都相等的多边形叫正多边形。

  12、*面镶嵌:用一些不重叠摆放的多边形把*面的一部分完全覆盖,叫做用多边形覆盖*面,

  13、公式与性质:

  ⑴三角形的内角和:三角形的内角和为180°

  ⑵三角形外角的性质:

  性质1:三角形的一个外角等于和它不相邻的两个内角的和。

  性质2:三角形的一个外角大于任何一个和它不相邻的内角。

  ⑶多边形内角和公式:边形的内角和等于·180°

  ⑷多边形的外角和:多边形的外角和为360°。

  ⑸多边形对角线的条数:

  ①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形。

  ②边形共有条对角线。

  第十二章全等三角形

  一、知识框架:

  二、知识概念:

  1、基本定义:

  ⑴全等形:能够完全重合的两个图形叫做全等形。

  ⑵全等三角形:能够完全重合的两个三角形叫做全等三角形。

  ⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点。

  ⑷对应边:全等三角形中互相重合的边叫做对应边。

  ⑸对应角:全等三角形中互相重合的角叫做对应角。

  2、基本性质:

  ⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性。

  ⑵全等三角形的性质:全等三角形的对应边相等,对应角相等。

  3、全等三角形的判定定理:

  ⑴边边边():三边对应相等的两个三角形全等。

  ⑵边角边():两边和它们的夹角对应相等的两个三角形全等。

  ⑶角边角():两角和它们的夹边对应相等的两个三角形全等。

  ⑷角角边():两角和其中一个角的对边对应相等的两个三角形全等。

  ⑸斜边、直角边():斜边和一条直角边对应相等的两个直角三角形全等。

  4、角*分线:

  ⑴画法:

  ⑵性质定理:角*分线上的点到角的两边的距离相等。

  ⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的*分线上。

  5、证明的基本方法:

  ⑴明确命题中的已知和求证。(包括隐含条件,如公共边、公共角、对顶角、角*分线、中线、高、等腰三角形等所隐含的边角关系)

  ⑵根据题意,画出图形,并用数字符号表示已知和求证。

  ⑶经过分析,找出由已知推出求证的.途径,写出证明过程。

  第十三章轴对称

  一、知识框架:

  二、知识概念:

  1、基本概念:

  ⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。

  ⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称。

  ⑶线段的垂直*分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直*分线。

  ⑷等腰三角形:有两条边相等的三角形叫做等腰三角形。相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。

  ⑸等边三角形:三条边都相等的三角形叫做等边三角形。

  2、基本性质:

  ⑴对称的性质:

  ①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直*分线。

  ②对称的图形都全等。

  ⑵线段垂直*分线的性质:

  ①线段垂直*分线上的点与这条线段两个端点的距离相等。

  ②与一条线段两个端点距离相等的点在这条线段的垂直*分线上。

  ⑶关于坐标轴对称的点的坐标性质

八年级数学上册知识点3

  1、刻画数据的集中趋势(*均水*)的量:*均数 、众数、中位数

  2、*均数

  *均数:一般地,对于n个数,我们把它们的和与n之商叫做这n个数的算术*均数,简称*均数。

  加权*均数。

  3、众数

  一组数据中出现次数最多的那个数据叫做这组数据的众数。

  4、中位数

  一般地,将一组数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的*均数)叫做这组数据的中位数。

  第七章 *行线的证明

  1、*行线的性质

  一般地,如果两条线互相*行的直线被第三条直线所截,那么同位角相等,内错角相等,同旁内角互补。

  也可以简单的说成:

  两直线*行,同位角相等;

  两直线*行,内错角相等;

  两直线*行,同旁内角互补。

  2、判定*行线

  两条直线被第三条直线所截,如果同位角相等,那么这两条直线*行。

  也可以简单说成:

  同位角相等两直线*行 两条直线被第三条直线所截,如果同位角相等,那么这两条直线*行;如果同旁内角互补,那么这两条直线*行。

  其他两条可以简单说成:

  内错角相等两直线*行

  同旁内角相等两直线*行

八年级数学上册知识点4

  数据的收集、整理与描述

  一.知识框架

  二.知识概念

  1.全面调查:考察全体对象的调查方式叫做全面调查.

  2.抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查.

  3.总体:要考察的全体对象称为总体.

  4.个体:组成总体的每一个考察对象称为个体.

  5.样本:被抽取的所有个体组成一个样本.

  6.样本容量:样本中个体的数目称为样本容量.

  7.频数:一般地,我们称落在不同小组中的数据个数为该组的频数.

  8.频率:频数与数据总数的比为频率.

  9.组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距.

八年级数学上册知识点5

  一、函数:

  一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

  二、自变量取值范围

  使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。

  三、函数的三种表示法及其优缺点

  (1)关系式(解析)法

  两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。

  (2)列表法

  把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

  (3)图象法

  用图象表示函数关系的方法叫做图象法。

  四、由函数关系式画其图像的一般步骤

  (1)列表:列表给出自变量与函数的一些对应值

  (2)描点:以表中每对对应值为坐标,在坐标*面内描出相应的点

  (3)连线:按照自变量由小到大的顺序,把所描各点用*滑的曲线连接起来。

  五、正比例函数和一次函数

  1、正比例函数和一次函数的概念

  一般地,若两个变量x,y间的关系可以表示成(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。

  特别地,当一次函数中的b=0时(即)(k为常数,k0),称y是x的正比例函数。

  2、一次函数的图像:所有一次函数的图像都是一条直线

  3、一次函数、正比例函数图像的主要特征:一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线。

  第七章知识点

  1、二元一次方程

  含有两个未知数,并且所含未知数的项的次数都是1的整式方程叫做二元一次方程。

  2、二元一次方程的解

  适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

  3、二元一次方程组

  含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。

  4、二元一次方程组的解

  二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。

  5、二元一次方程组的解法

  (1)代入(消元)法(2)加减(消元)法

  第八章知识点

  1、刻画数据的集中趋势(*均水*)的量:*均数、众数、中位数

  2、*均数

  (2)加权*均数:

  3、众数

  一组数据中出现次数最多的那个数据叫做这组数据的众数。

  4、中位数

  一般地,将一组数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的*均数)叫做这组数据的中位数。

八年级数学上册知识点6

  一、分式

  ※1、两个整数不能整除时,出现了分数;类似地,当两个整式不能整除时,就出现了分式。

  整式A除以整式B,可以表示成 的形式。如果除式B中含有字母,那么称 为分式,对于任意一个分式,分母都不能为零。

  ※2、整式和分式统称为有理式,即有:

  ※3、进行分数的化简与运算时,常要进行约分和通分,其主要依据是分数的基本性质:

  分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

  ※4、一个分式的分子、分母有公因式时,可以运用分式的基本性质,把这个分式的分子、分母同时除以它的们的公因式,也就是把分子、分母的公因式约去,这叫做约分。

  二、分式的乘除法

  ※1、分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

  ※2、分式乘方,把分子、分母分别乘方,逆向运用 ,当n为整数时,仍然有 成立。

  ※3、分子与分母没有公因式的分式,叫做最简分式。

  三、分式的加减法

  ※1、分式与分数类似,也可以通分.根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

  ※2、分式的加减法:

  分式的加减法与分数的加减法一样,分为同分母的分式相加减与异分母的分式相加减。

  (1)同分母的分式相加减,分母不变,把分子相加减;

  上述法则用式子表示是:

  (2)异号分母的分式相加减,先通分,变为同分母的分式,然后再加减;

  上述法则用式子表示是:

  ※3、概念内涵:

  通分的关键是确定最简分母,其方法如下:最简公分母的系数,取各分母系数的最小公倍数;最简公分母的字母,取各分母所有字母的次幂的积,如果分母是多项式,则首先对多项式进行因式分解。

  四、分式方程

  ※1、解分式方程的一般步骤:

  ①在方程的两边都乘最简公分母,约去分母,化成整式方程;

  ②解这个整式方程;

  ③把整式方程的根代入最简公分母,看结果是不是零,使最简公母为零的根是原方程的增根,必须舍去.

  ※2、列分式方程解应用题的一般步骤:

  ①审清题意;

  ②设未知数;

  ③根据题意找相等关系,列出(分式)方程;

  ④解方程,并验根;

  ⑤写出答案。

  数学解题方法与技巧

  填空题答题技巧

  要求熟记的基本概念、基本事实、数据公式、原理,复习时要特别细心,注意记熟,做到临考前能准确无误、清晰回忆。

  对那些起关键作用的,或最容易混淆记错的概念、符号或图形要特别注意,因为考查的往往就是它们。如区间的端点开还是闭、定义域和值域要用区间或集合表示、单调区间误写成不等式或把两个单调区间取了并集等等。

  解答题答题技巧

  (1)仔细审题。注意题目中的关键词,准确理解考题要求。

  (2)规范表述。分清层次,要注意计算的准确性和简约性、逻辑的条理性和连贯性。

  (3)给出结论。注意分类讨论的问题,最后要归纳结论。

  (4)讲求效率。合理有序的书写试卷和使用草稿纸,节省验算时间。

  初中数学有理数的运算知识点

  加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。

  减法:减去一个数,等于加上这个数的相反数。

  乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。

  除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。

  乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

八年级数学上册知识点7

  1.无理数定义:无限不循环小数

  2.实数的分类:分为有理数和无理数。有理数分为:正有理数、负有理数、零

  3.算术*方根:若一个正数x的*方等于a,即x=a,则这个正数x为a的算术*方根。a的算术*方根记作,读作“根号a”,a叫做被开方数。规定:0的算术*方根为0。

  4.*方根:如果一个数x的*方等于a,即x=a,那么这个数x就叫做a的*方根。

  5.二次根式的定义:一般形如(a≥0)的代数式叫做二次根式,其中,a叫做被开方数,被开方数必须大于或等于0。

  6.最简二次根式满足:①.分母中不含根号=根号下没有分母=根号下没有分数

  ②.根号下不含可以开得尽方的数

  7.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。

  8.()2=a(a≥0) =a(a≥0)

  ①二次根式的乘法法则:×(a≥0,b≥0)

  两个二次根式相乘,把被开方数相乘,根指数不变.

  ②积的算术*方根的_质:(a≥0,b≥0)

  两个非负数的积的算术*方根,等于这两个因数的算术*方根的乘积.

  ③二次根式的除法法则:=(a≥0,b>0)

  两个二次根式相除,把被开方数相除,根指数不变.

  ④商的算术*方根的_质:=(a≥0,b>0)

  数学单项式知识点

  1、都是数字与字母的乘积的代数式叫做单项式。

  2、单项式的数字因数叫做单项式的系数。

  3、单项式中所有字母的指数和叫做单项式的次数。

  4、单独一个数或一个字母也是单项式。

  5、只含有字母因式的单项式的系数是1或―1。

  6、单独的一个数字是单项式,它的系数是它本身。

  7、单独的一个非零常数的次数是0。

  8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

  9、单项式的系数包括它前面的符号。

  10、单项式的系数是带分数时,应化成假分数。

  11、单项式的系数是1或―1时,通常省略数字“1”。

  12、单项式的次数仅与字母有关,与单项式的系数无关。

  初中生如何能轻松学好数学

  1学好初中数学认真听课很重要

  初中学生想要学好数学,在课上一定要认真听老师讲课。老师在课堂上讲的是非常重要的知识点,但是在初中数学课上选择做笔记并不是一个正确的做法。

  在初中数学课上你需要做的就是跟住老师的思维,学好老师的思维方式,这个阶段要培养自己的数学逻辑思维能力。大部分的初中数学老师,对于这门学科都有自己的见解,所以跟住老师的思路久而久之就会逐渐转换成自己解题的思路。

  2初中生学习数学要会独立思考

  初一初二是数学开窍的阶段,在解题上初中生一定要学会自己独立去思考。你需要做的就是不断的做题来培养自己的这一能力。而在积累到一定的数量之后,你的这种独立解题的能力是别人无法超越的。这个培养过程很简单也很短,只要你得到一点的成就感对于初中数学你就会充满自信。

  其实,学好初中数学关键在于自己的真实能力,而不是形式。很多的初中生数学笔记一大堆,最后考试的成绩也就是那样。在学习上初中数学也好,其他科目也罢,不要讲究形式感,关键是要把一个个的问题和知识学透。不反对记笔记,但是不要一味的做笔记,听初中数学课是需要过脑子的。

  3学好初中数学要较真

  数学是一门严谨的学科,对于自己不会的地区和知识点初中生绝对不能模棱两可的就过去了,而是要把它弄清楚做明白。有的同学在初中数学的学习中不会只是因为不熟而已,那么怎么办?就是多练习和多思考,数学的学习没有什么捷径和技巧,熟能生巧才是最好的学习技巧。另外,初中数学想要打高分,在做题方面一定要仔细和认真,不能马虎。

八年级数学上册知识点8

  一定要做好预习

  初二学生想要学好数学,一定要学会提前预习。将老师要将的内容提前预习一下,对于自己在预习中会出现的不理解的概念或者不懂的知识点,要做好标记和记录,这样初二学生在数学课堂上才会注意力集中,这样在听课的过程中才能够跟上老师的讲课思路,自己的思维才能够集中。带着问题去听老师讲课,这样会将被动的学习变为主动,可以有效的提高初二新生在数学课堂上的学习效率。

  课下要学会及时复习

  当初二学生在课上认真听讲后,那么对于初二数学的学习课后也是需要及时复习的。当老师讲完初二数学一节课的内容之后,初中生一定要听明白,不要留下任何的疑点,有不懂的地方要及时的问同学或者老师。这样在课后复习的时候才能够自己独立的去完成作业。每一次的初二数学课后,初中生都应该将这节课学习的知识点进行归纳和整理。

  初中数学有理数知识点

  (一)定义

  有理数为整数(正整数、0、负整数)和分数的统称,正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。

  (二)有理数的性质

  (1)顺序性

  (2)封闭性

  (3)稠密性

  (三)有理数的加法运算法则

  1、同号两数相加,取与加数相同的符号,并把绝对值相加。

  2、异号两数相加,若绝对值相等则互为相反数的两数和为0;若绝对值不相等,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

  3、互为相反数的两数相加得0。

  4、一个数同0相加仍得这个数。

  5、互为相反数的两个数,可以先相加。

  6、符号相同的数可以先相加。

  7、分母相同的数可以先相加。

  8、几个数相加能得整数的可以先相加。

  9、减去一个数,等于加上这个数的相反数,即把有理数的减法利用数的相反数变成加法进行运算。

八年级数学上册知识点9

  一、四边形的相关概念

  1、四边形

  在同一*面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形。

  2、四边形具有不稳定性

  3、四边形的内角和定理及外角和定理

  四边形的内角和定理:四边形的内角和等于360°。 四边形的外角和定理:四边形的外角和等于360°。

  推论:多边形的内角和定理:n边形的内角和等于(n2)180°;

  多边形的外角和定理:任意多边形的外角和等于360°。

  6、设多边形的边数为n,则多边形的对角线共有条。从n边形的一个顶点出发能引(n-3)

  2条对角线,将n边形分成(n-2)个三角形。

  二、*行四边形

  1、*行四边形的定义

  两组对边分别*行的四边形叫做*行四边形。

  2、*行四边形的性质

  (1)*行四边形的对边*行且相等。

  (2)*行四边形相邻的角互补,对角相等

  (3)*行四边形的对角线互相*分。

  (4)*行四边形是中心对称图形,对称中心是对角线的交点。

  常用点:(1)若一直线过*行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此*行四边形的面积。

  (2)推论:夹在两条*行线间的*行线段相等。

  3、*行四边形的判定

  (1)定义:两组对边分别*行的四边形是*行四边形

  (2)定理1:两组对角分别相等的四边形是*行四边形

  (3)定理2:两组对边分别相等的四边形是*行四边形

  (4)定理3:对角线互相*分的四边形是*行四边形

  (5)定理4:一组对边*行且相等的四边形是*行四边形

  4、两条*行线的距离

  两条*行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条*行线的距离。 *行线间的距离处处相等。

  5、*行四边形的面积 S*行四边形=底边长×高=ah

八年级数学上册知识点10

  1、算术*方根:一般地,如果一个正数x的*方等于a,即x2=a,那么正数x叫做a的算术*方根,记作。0的算术*方根为0;从定义可知,只有当a≥0时,a才有算术*方根。

  2、*方根:一般地,如果一个数x的*方根等于a,即x2=a,那么数x就叫做a的*方根。

  3、正数有两个*方根(一正一负)它们互为相反数;0只有一个*方根,就是它本身;负数没有*方根。

  4、正数的立方根是正数;0的立方根是0;负数的立方根是负数。

  5、数a的相反数是-a,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0

  实数部分主要要求学生了解无理数和实数的概念,知道实数和数轴上的点一一对应,能估算无理数的大小;了解实数的运算法则及运算律,会进行实数的运算。重点是实数的意义和实数的分类;实数的运算法则及运算律。

  数学的学习思维方法

  1、比较法

  通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。

  比较法要注意:

  (1)找相同点必找相异点,找相异点必找相同点,不可或缺,也就是说,比较要完整。

  (2)找联系与区别,这是比较的实质。

  (3)必须在同一种关系下(同一种标准)进行比较,这是“比较”的基本条件。

  (4)要抓住主要内容进行比较,尽量少用“穷举法”进行比较,那样会使重点不突出。

  (5)因为数学的严密性,决定了比较必须要精细,往往一个字,一个符号就决定了比较结论的对或错。

  2、公式法

  运用定律、公式、规则、法则来解决问题的方法。它体现的是由一般到特殊的演绎思维。公式法简便、有效,也是孩子学习数学必须学会和掌握的一种方法。但一定要让孩子对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。

  初中数学重点知识点

  *行:①同一*面内,不相交的两条直线叫做*行线。②经过直线外一点,有且只有一条直线与这条直线*行。③如果两条直线都与第3条直线*行,那么这两条直线互相*行。

  垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。②互相垂直的两条直线的交点叫做垂足。③*面内,过一点有且只有一条直线与已知直线垂直。

  垂直*分线:垂直和*分一条线段的直线叫垂直*分线。

  垂直*分线垂直*分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直*分线是一条直线,所以在画垂直*分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。

推荐访问:知识点 上册 八年级 八年级数学上册知识点【10篇】 八年级数学上册知识点1 八年级数学上册知识点归纳总结人教版

Top